Kinetic Resolution of Acyclic 1,2-Diols Using a Sequential Lipase-Catalyzed Transesterification in Organic Solvents

Fritz Theil,* Judith Weidner, Sibylle Ballschuh, Annamarie Kunath, and Hans Schick

Centre of Selective Organic Synthesis, Rudower Chaussee 5, D-12484 Berlin, Germany

Received September 7, 1993®

A method for the kinetic resolution of 3-(aryloxy)-1,2-propanediols rac-1a-n without additional protection-deprotection steps using a lipase-catalyzed sequential transesterification with lipase amano PS has been developed. In the first step of this one-pot procedure the racemic 1,2-diols are acylated regioselectively at the primary hydroxy group without enantioselection. The subsequent acylation at the secondary hydroxy group of the formed primary monoacetate is responsible for high enantioselection. The enantioselectivity of this transformation depends significantly on the substitution pattern of the aryl ring and the organic solvent used. 3-(Aryloxy)-1,2-propanediols with substituents in the *para*-position show a much higher enantioselectivity than the corresponding derivatives with *ortho*-substituents. Among other substrates, the pharmaceuticals Mephenesin, Guaifenesin, and Chlorphenesin have been resolved. The replacement of the aryloxy by an alkyl substituent causes a dramatic decrease of enantioselectivity.

Introduction

Enzyme-catalyzed transformations represent an immense potential for the preparation of enantiomerically pure compounds by asymmetrization of prochiral compounds or kinetic resolution of racemic substrates.¹

In continuation of our work on lipase-catalyzed transesterification of dihydroxy compounds,² we have chosen acyclic racemic 1,2-diols³ as substrates for lipase-catalyzed transesterification in order to obtain enantiomerically pure compounds.

The 1,2-diol functionality is found in a series of synthetic intermediates,⁴ pharmaceuticals, and pharmaceutical intermediates.⁵ Therefore, methods for the preparation of enantiomerically pure 1,2-diols are of increasing interest.

Chemical methods for the preparation of optically active 1,2-diols include chiral-pool synthesis,^{5a} asymmetric hydroxylation,⁶ ring opening of epoxides,⁷ and reduction of optically active 2-hydroxy carboxylic acid derivatives.⁸ Enzyme-mediated synthesis of optically active 1,2-diols was achieved using a lipase-catalyzed kinetic resolution

(2) (a) Theil, F.; Ballschuh, S.; Schick, H.; Haupt, M.; Häfner, B.;
Schwarz, S. Synthesis 1988, 541. (b) Djadchenko, M. A.; Pivnitsky, K.
K.; Theil, F.; Schick, H. J. Chem. Soc., Perkin Trans. 1 1989, 2001. (c)
Theil, F.; Schick, H.; Lapitskaya, M. A.; Pivnitsky, K. K. Liebigs Ann.
Chem. 1991, 195. (d) Theil, F.; Schick, H.; Winter, G.; Reck, G.
Tetrahedron 1991, 47, 7569. (e) Weidner, J.; Theil, F.; Kunath, A.; Schick,
H. Liebigs Ann. Chem. 1991, 1301.

(3) Preliminary communication: Theil, F.; Weidner, J.; Ballschuh, S.; Kunath, A.; Schick, H. Tetrahedron Lett. 1993, 34, 305.

(4) Parida, S.; Dordick, J. S. J. Am. Chem. Soc. 1991, 113, 2253 and references cited therein.

of racemic 2-hydroxy carboxylic ester followed by a subsequent reduction,⁴ by lipase-catalyzed transesterification or hydrolysis of monoprotected diols or their corresponding acylated compounds,⁹ respectively, or by lipase-catalyzed alcoholysis of the diacylated diols.^{5b} The lipase-catalyzed transesterification of 1,2-diols is highly regioselective¹⁰ but shows only low enantioselectivity in the monoacylation step.¹¹

It was our aim to use aliphatic diols, which do not require a manipulation at the primary hydroxy group, as substrates in lipase-catalyzed sequential transesterifications.¹² We recently could demonstrate the application of this concept in the kinetic resolution of Mephenesin (rac-1b).¹³ The enantioselectivity in this case was moderate (E = 27), but it was possible to obtain both enantiomers of 1b in enantiomerically pure form. In order to obtain information about the influence of the structure of these diols on the enantioselectivity of the lipase-catalyzed acetylation, the 2-methylphenoxy residue of Mephenesin (rac-1b) was replaced by other substituted aryloxy groups, one aryl substituent, and alkyl residues.

Due to the influence of the organic solvent on the enantioselectivity the reaction medium was altered to improve the enantioselectivity. The results concerning the influence of the organic solvent on the enantioselectivity in enzyme-catalyzed transesterifications are contradictory.^{4,14} Although there seems to exist no general rule on the influence of the structure of the solvent, in many cases the variation of the solvent is an easy way to enhance the enantioselectivity of lipase-catalyzed transesterifications.

Abstract published in Advance ACS Abstracts, December 15, 1993.
 (1) (a) Faber, K. Biotransformations in Organic Chemistry;
 Springer-Verlag: Heidelberg, 1992. (b) Poppe, L.; Novák, L. Selective Biocatalysis; VCH: Weinheim, 1992. (c) Roberts, S. M., Wiggins, K., Casy, G., Eds. Whole Cell and Isolated Enzymes in Organic Synthesis;
 Wiley: New York, 1992. (d) Santaniello, E.; Ferraboschi, P.; Grisenti, P.; Manzocchi, A. Chem. Rev. 1992, 92, 1071.

^{(5) (}a) Nelson, W. L.; Wennerstrom, J. E.; Sankar, S. R. J. Org. Chem. (5) (a) Nelson, W. L.; Wennerstrom, J. E.; Sankar, S. R. J. Org. Chem. 1977, 42, 1006. (b) Bianchi, D.; Bosetti, A.; Cesti, P.; Golini, P. Tetrahedron Lett. 1992, 33, 3231.

⁽⁶⁾ Wang, Z.-M.; Zhang, X.-L.; Sharpless, K. B. Tetrahedron Lett. 1993, 34, 2267 and references cited therein.

⁽⁷⁾ White, J. D.; Kang, M.-C.; Sheldon, B. G. Tetrahedron Lett. 1983, 24, 4539.

 ^{(8) (}a) Mikami, K.; Terada, M.; Nakai, T. J. Am. Chem. Soc. 1990, 112,
 (9) (a) Corey, E. J.; Bakshi, R. K. Tetrahedron Lett. 1990, 31, 611. (c)
 Kikuchi, H.; Mori, K. Agric. Biol. Chem. 1989, 53, 2095. (c) Brown, H.
 C.; Pai, G. G.; Jadhav, P. K. J. Am. Chem. Soc. 1984, 106, 1531.

^{(9) (}a) Laumen, K.; Breitgoff, D.; Seemayer, R.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1989, 148. (b) Pederson, R. L.; Liu, K. K.-C.; Rutan, J. F.; Chen, L.; Wong, C.-H. J. Org. Chem. 1990, 55, 4897. (c) Chen, C.-S.; Liu, Y.-C.; Marsella, M. J. Chem. Soc., Perkin Trans. 1 1990, 2559. (d) Goergens, U.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1991, 1064. (e) Goergens, U.; Schneider, M. P. J. Chem. Soc., Chem. Commun. 1991, 1066. (f) Kim, M.-J.; Choi, Y. K. J. Org. Chem. 1992, 57, 1605.

⁽¹⁰⁾ Cesti, P.; Zaks, A.; Klibanov, A. M. Appl. Biochem. Biotechnol. 1985, 11, 401.

⁽¹¹⁾ Janssen, A. J. M.; Klunder, A. J. H.; Zwanenburg, B. Tetrahedron 1991, 47, 7409.

⁽¹²⁾ Guo, Z.-W.; Wu, S.-H.; Chen, C.-S.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. 1990, 112, 4942.

⁽¹³⁾ Theil, F.; Ballschuh, S.; Kunath, A.; Schick, H. Tetrahedron: Asymmetry 1991, 2, 1031.

Scheme 1

Results and Discussion

In a first attempt Mephenesin (rac-1b) was converted with vinyl acetate in the presence of different lipases in the solvent system tetrahydrofuran-triethylamine.¹⁵ The reaction was terminated after 25–50% conversion by filtration of the enzyme to give the diol (S)-1b and the corresponding primary monoacetate (S)-2b (Scheme 1). The results of the enantioselectivity of this reaction are summarized in Table 1. In general, all lipases tested show very high regioselectivity but the enantioselectivity of this transformation is very low. Lipase amano PS exhibits the highest enantioselectivity (E = 4).¹⁶ Therefore, this lipase was chosen as biocatalyst in a sequential transesterification to resolve Mephenesin (rac-1b).¹³

In order to investigate the influence of the substituent R at the aryl ring, 14 different racemic 3-(aryloxy)-1,2propanediols rac-1a-n were used as substrates in a kinetic resolution by a lipase-catalyzed sequential acetylation. Mephenesin (rac-1b), Chlorphenesin (rac-1j), and Guaifenesin (rac-1e) represent pharmaceuticals, and one of the diols, the naphthyloxy derivative rac-1k, is used as an intermediate in the synthesis of propanolol.

Gualfenesin (rac-1e)

Transformations were carried out with vinyl acetate in the presence of lipase amano PS in tetrahydrofurantriethylamine until ca.50% of the fastly formed primary

 Table 1. Kinetic Resolution of Mephenesin rac-1b by Monoacetylation

	time	dio (<i>S</i>)-1	1 1 b	monoac	etate 2b		
enzyme (mg)	(h)	yield	ee	yield	ee	с	<i>E</i> 4 ~1 1
amano PS (10)	2	49	40	47	45	0.47	4
lipozyme (50)	6	62	6	37	9	0.40	~1
SP 382 (50)	1			94	0		1
SP 382 (10)	1	57	6	45	10	0.38	~1
varrowia lip. (100)	8	67	12	35	23	0.34	1.8
pancreatin (30)	2.5	71	1	29	3	0.25	~1

Table 2. Kinetic Resolution of the 3-(Aryloxy)propane-1,2-diols *rac*-1a-n by Sequential Acetylation in THF/NEt₃

1

			(R)- 2		(S)	-3		
sub- strate	R	time (h)	yield (%)	ee (%)	yield (%)	ee (%)	с	E
la	Н	92	48	85	49	79	0.52	23
1b	2-Me	96	45	9 3	48	80	0.54	27
1c	3-Me	72	55	66	43	87	0.43	28
1 d	4-Me	48	57	66	42	93	0.42	55
le	2-OMe	44	58	63	42	87	0.42	27
1 f	3-OMe	29	49	91	47	95	0.49	>100 (124)
1g	4-OMe	28	48	96	52	94	0.51	>100 (127)
1ĥ	2-Cl	24	59	55	38	88	0.38	27
1i	3-Cl	24	48	86	43	92	0.48	67
1j	4-Cl	25	48	94	49	92	0.50	85
1k	2,3-C ₄ H ₄	72	63	42	36	78	0.35	12
11	2-t-Bu	78	82	3	17	34	0.08	2
1 m	3-t-Bu	73	67	43	33	80	0.35	14
1 n	4-t-Bu	50	50	99	50	93	0.52	>100(145)

monoacetates $rac \cdot 2a - n$ were converted enantioselectively into the diacetates $(S) \cdot 3a - n$ (Scheme 2). The results are given in Table 2. The (S)-enantiomers of the primary monoacetates 2a - n are converted at a higher rate into the (S)-diacetates 3a - n. The corresponding (R)-enantiomers $2a - n^{17}$ are slow-reacting and resist further diacetylation in greater extent.

^{(14) (}a) Sakurai, T.; Margolin, A. L.; Russell, A. J.; Klibanov, A. M. J. Am. Chem. Soc. 1988, 110, 7236. (b) Wang, Y.-F.; Lalonde, J. J.; Momongan, M.; Bergbreiter, D. E.; Wong, C. H. J. Am. Chem. Soc. 1988, 110, 7200. (c) Nakamura, K.; Takebe, Y.; Kitayama, T.; Ohno, A. Tetrahedron Lett. 1991, 32, 4941. (d) Secundo, F.; Riva, S.; Carrea, G. Tetrahedron: Asymmetry 1992, 3, 267.

⁽¹⁵⁾ This solvent system was used advantageously by us earlier; see ref 2.

⁽¹⁶⁾ E values were calculated according to: Chen, C.-S.; Fujimoto, Y.; Girdaukas, G.; Sih, C. J. J. Am. Chem. Soc. **1982**, 104, 7294.

Table 3. Kinetic Resolution of the 1,2-Diols rac-4a-d by Sequential Acetylation in THF/NEts

				monoacet	ate 5		diacete	ate 6				
substrate	R	lipase	yield (%)	ee (%)	$[\alpha]_{D^{a}}$	conf	yield (%)	ee (%)	$[\alpha]_{D}^{a}$	conf	c	E
4a	Et	amano PS	45	61	-10.0%	S°	38	49	+9.0 ^b	R°	0.55	5
4a	\mathbf{Et}	pancreatin	70	49	-9.1 ^b	S^{c}	27	94	+17.5	R^c	0.34	53
4b	n-Pr	amano PS	40	19	0	S^d	52	11	0	R^d	0.63	1.5
4b	n-Pr	pancreatin	58	6	0	S^d	33	6	0	Rd	0.50	1
4c	C(OH)Me ₂	amano PS	63	17	-3.0e	S^{f}	34	14	+3.0 ^e	R ^f	0.55	1.5
4 c	C(OH)Me ₂	pancreatin	51	55	-9.3e	S/	41	61	+12.7°	R/	0.47	7
4d	Ph	amano PS	60	66	-25.3°	R^c	40	93	+39.4*	S	0.42	55
4d	Ph	pancreatin	67	27	-11.0e	R°	28	69	+28.2 ^e	S^{c}	0.28	7

^a Of the corresponding diol after deacetylation. ^b c 2.1, EtOH. ^c Reference 11. ^d Due to no optical rotation value of the diol the assignment of the absolute configuration is not unambigious. ^e c 1.0, MeOH. ^f Reference 20.

Table 4.	Kinetic	Resolution	of the	Diol	<i>rac</i> -le i	n Vs	rious	Solve	nte
----------	---------	------------	--------	------	------------------	------	-------	-------	-----

			monoace	tate 2e	diaceta	te 3e		
solvent	$\log P$	time (h)	yield (%)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	с	E		
THF	0.49	100	70	29.4	25	94.6	0.23	48
1,4-dioxane	-1.1	100	78	17.7	17	94.2	0.16	40
diethyl ether	0.85	100	43	94.5	50	83.0	0.53	39
tert-butyl methyl ether	2.0	100	41	98.4	52	86.4	0.53	65
toluene	2.5	100	54	64.6	42	85.4	0.43	25
3-methyl-3-pentanol	~ 2	100	62	53.5	37	93.3	0.36	49
tert-amyl alcohol	1.4	100	66	45.1	33	94.7	0.32	57

The absolute configuration of the reaction products was assigned after deacetylation on the basis of the CD spectra of the corresponding diols 1a-n in Cupra A solution.^{5a} Deacylation of (R)-2a-n afforded (S)-1a-n, and (S)-3a-n gave (R)-1a-n. All diols with a positive short-wavelength (265-285 nm) Cotton effect were assigned the (S)configuration (Table 11).

In general, the derivatives with substituents in the 4-position of the aromatic ring show significantly higher enantioselectivities than the corresponding derivatives with substituents in the 2-position. Such a relationship could not be observed for compounds substituted in the 3-position of the aromatic ring. A substituent in the 4-position, independently of its electronic properties, seems to be a prerequisite for a high enantioselectivity of the resolution procedure, because the unsubstituted derivative rac-1a shows an enantioselectivity comparable to the 2-substituted compounds. A similar behavior was observed recently by Schneider¹⁸ in the resolution of the corresponding chlorohydrins by a lipase-catalyzed transesterification. Surprisingly, Sharpless et al.⁶ found a comparable relationship in the asymmetric dihydroxylation of (aryloxy) allyl ethers to give (S)-3-(aryloxy)-1,2propanediols.

In comparison, the resolution of the racemic diols rac-4a-d was attempted under the same conditions in the presence of lipase amano PS and pancreatin (Scheme 3). 1-Phenyl-1,2-ethanediol (rac-4d) was converted with a fairly high enantioselectivity into the monoacetate (R)-5d and the diacetate (S)-6d.¹⁹ However, the diols with an aliphatic substituent R are very poor substrates in an enantioselective sequential transacetylation reaction in the presence of lipase amano PS (Table 3).

By using pancreatin as the biocatalyst in the sequential transesterification only 1,2-butanediol (*rac-4a*) was con-

verted with a reasonable enantioselectivity (E = 53) into the monoacetate (S)-5a and the diacetate (R)-6a. 1,2-Pentanediol (rac-4b) and the triol rac-4c are poor substrates in the pancreatin-catalyzed reaction as well. The latter compound is a building block for vitamin D₃ metabolites.²⁰ The absolute configurations of the products (S)-5a-c, (R)-6a-c, (R)-5d, and (S)-6d were determined after deacetylation to the corresponding diols on the basis of their optical rotation values reported in the literature.

The results documented in Tables 2 and 3 clearly demonstrate that lipase amano PS requires an aromatic substituent in the 1,2-diols for a high enantioselection between both enantiomeric primary monoacetates which are formed as intermediates in this sequential reaction. The enantioselectivity of the kinetic resolution of the racemic 1,2-diols is in accordance with Kazlauskas' rule.²¹

To study the influence of the organic solvent on the enantioselectivity of the above-described kinetic resolution procedure the methoxy- and *tert*-butyl-substituted 3-(aryl-oxy)-1,2-propanediols *rac*-1e-g and *rac*-11-n, respectively, were selected as substrates.

The results of the influence of the different solvents on the enantioselectivity summarized in Tables 4–9 show that

⁽¹⁷⁾ In most cases the primary monoacetates were contaminated with a trace (<5%) of the corresponding regioisomeric secondary monoacetate as indicated by TLC.
(18) Ader, U.; Schneider, M. P. Tetrahedron: Asymmetry 1992, 3,

⁽¹⁸⁾ Ader, U.; Schneider, M. P. Tetrahedron: Asymmetry 1992, 3, 521.

⁽¹⁹⁾ Simultaneously with our investigations a comparable result using rac-4 with a carboxylic anhydride as acylating agent was published: Bosetti, A.; Bianchi, D.; Cesti, P.; Golini, P.; Spezia, S. J. Chem. Soc., Perkin Trans. 1 1992, 2395.

⁽²⁰⁾ Schrötter, E.; Weidner, J.; Schick, H. Liebigs Ann. Chem. 1991, 397.

⁽²¹⁾ Kazlauskas, R. J.; Weissfloch, A. N. E.; Rappaport, A. T.; Cuccia, L. A. J. Org. Chem. 1991, 56, 2656.

	Table 5.	Kinetic Res	solution of the	e Dioi <i>Fac</i> -II 1	in Various So	lvents			
			monoacet	ate 2f	diacetate	e 3f			
solvent	$\log P$	time (h)	yield (%)	ee (%)	yield (%)	ee (%)	с	i	E
THF	0.49	135	45	95.4	43	99.1	0.49	>100	(848)
1.4-dioxane	-1.1	135	48	85.9	44	98.5	0.46	>100	(369)
diethyl ether	0.85	135	43	85.8	48	96.0	0.47	>100	(136)
tert-butyl methyl ether	2.0	100	45	>99.9	49	97.1	0.51	>100	(>514)
toluene	2.5	100	34	99.4	61	56.2	0.64	19	(- 011)
3-methyl-3-pentenol	~2.0	100	45	90.4	47	96.8	0.51	>100	(381)
tert-amyl alcohol	14	100	46	98.5	47	98.2	0.50	>100	(541)
tert-amyr aconor	1.1			00.0		00.2	0.00	2 100	(041)
	Table 6.	Kinetic Res	olution of the	Diol rac-1g	in Various So	lvents			
			monoace	tate 2g	diacetat	ze 3g			-
solvent	log P	time (h)	yield (%)	ee (%)	yield (%)	ee (%)	c		E
THF	0.49	100	50	91.6	50	97.9	0.49	>10	0 (308)
1,4-dioxane	-1.1	100	52	82.6	48	97.9	0.46	>10	0 (244)
diethyl ether	0.85	100	46	99.6	53	88.8	0.53	>10	0 (103)
tert-butyl methyl ether	2.0	100	42	99.7	54	81.9	0.55	6	3
toluene	2.5	100	43	99.9	55	83.9	0.54	84	4
3-methyl-3-pentanol	~2	100	46	97.9	54	88.6	0.52	7	5
tert-amyl alcohol	1.4	100	44	98.4	53	90.4	0.52	9	5
	Table 7.	Kinetic Res	olution of the	e Diol <i>rac</i> -11 i	in Various So	lvents			
			mono	pacetate 21	di	acetate 31			
solvent	$\log P$	time (h)	yield (%)) ee (%)	yield (%	6) e	e (%)	с	E
THF	0.49	100	95		2		•		
1.4-dioxane	-1.1	100	75		1				
diethyl ether	0.85	100	68	26.1	18		94.6	0.20	46
tert-butyl methyl ether	2.0	100	54	38.7	29		63.0	0.38	6
toluene	2.5	100	74	12.8	18		73.9	0.15	8
3-methyl-3-peptapol	~ 2	100	77	15.6	12		93.9	0.15	37
tert-amyl alcohol	1.4	100	78	10.0	6		00.0	0.10	
	Table 8.	Kinetic Res	olution of the	Diol <i>rac</i> -1m	in Various So	lvents			
			monoacet	tate 2m	diacetat	e 3m			
solvent	$\log P$	time (h)	vield (%)	ee (%)	vield (%)	ee (%)	с		E
TUP			· (/v/	(/0/	J (/0/	(/0/	-		
	010	100	59	61 7	40	05 3	0 20	N104	0 (990)
1 Adiovana	0.49	100	58	61.7 45 6	40 30	98.3	0.39	>10	0 (220)
1,4-dioxane	0.49 -1.1	100 100	58 62	61.7 45.6	40 30 49	98.3 98.6	0.39	>10	0 (220) 0 (223)
1,4-dioxane diethyl ether	0.49 -1.1 0.85	100 100 100	58 62 48	61.7 45.6 99.1	40 30 49	98.3 98.6 96.8	0.39 0.32 0.50	>10 >10 >10	0 (220) 0 (223) 0 (332)
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether	0.49 -1.1 0.85 2.0	100 100 100 113	58 62 48 38	61.7 45.6 99.1 96.8	40 30 49 58	98.3 98.6 96.8 63.3	0.39 0.32 0.50 0.60	>10 >10 >10 >10	0 (220) 0 (223) 0 (332) 7
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene	0.49 -1.1 0.85 2.0 2.5	100 100 100 113 113	58 62 48 38 48	61.7 45.6 99.1 96.8 93.0	40 30 49 58 47	98.3 98.6 96.8 63.3 92.4	0.39 0.32 0.50 0.60 0.50	>10 >10 >10 1' 8	0 (220) 0 (223) 0 (332) 7 6
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol	$\begin{array}{c} 0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \end{array}$	100 100 113 113 113 113	58 62 48 38 48 51	61.7 45.6 99.1 96.8 93.0 92.2	40 30 49 58 47 48	98.3 98.6 96.8 63.3 92.4 97.1	0.39 0.32 0.50 0.60 0.50 0.49	>100 >100 >100 1' 80 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226)
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol <i>tert</i> -amyl alcohol	$0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \\ 1.4$	100 100 100 113 113 113 113 113	58 62 48 38 48 51 52	61.7 45.6 99.1 96.8 93.0 92.2 90.3	40 30 49 58 47 48 48 48	98.3 98.6 96.8 63.3 92.4 97.1 97.9	0.39 0.32 0.50 0.60 0.50 0.49 0.48	>100 >100 >100 17 80 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295)
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol <i>tert</i> -amyl alcohol	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9.	100 100 113 113 113 113 113 Kinetic Res	58 62 48 38 48 51 52 olution of the	61.7 45.6 99.1 96.8 93.0 92.2 90.3 Diol <i>rac</i>-1n	40 30 49 58 47 48 48 48 in Various So	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents	0.39 0.32 0.50 0.60 0.50 0.49 0.48	>100 >100 >100 1' 80 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295)
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol <i>tert</i> -amyl alcohol	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9.	100 100 113 113 113 113 113 113 Kinetic Res	58 62 48 38 48 51 52 olution of the monoacet	61.7 45.6 99.1 96.8 93.0 92.2 90.3 Diol <i>rac</i> -1 n ate 2n	40 30 49 58 47 48 48 in Various So diacetate	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n	0.39 0.32 0.50 0.60 0.50 0.49 0.48	>100 >100 >100 1' 80 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295)
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol <i>tert</i> -amyl alcohol	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9.	100 100 113 113 113 113 113 Kinetic Res	58 62 48 38 48 51 52 olution of the monoacet yield (%)	61.7 45.6 99.1 96.8 93.0 92.2 90.3 a Diol <i>rac</i> -1 n ate 2n ee (%)	40 30 49 58 47 48 48 in Various So diacetate yield (%)	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%)	0.39 0.32 0.50 0.60 0.50 0.49 0.48	>100 >100 10 100 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) E
1,4-dioxane diethyl ether <i>tert</i> -butyl methyl ether toluene 3-methyl-3-pentanol <i>tert</i> -amyl alcohol solvent THF	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9. log P 0.49	100 100 113 113 113 113 Kinetic Res time (h) 100	58 62 48 38 48 51 52 olution of the <u>monoacet</u> yield (%) 47	61.7 45.6 99.1 96.8 93.0 92.2 90.3 e Diol <i>rac</i>-1n ate 2n ee (%) 99.1	40 30 49 58 47 48 48 in Various So diacetate yield (%) 49	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4	0.39 0.32 0.50 0.60 0.50 0.49 0.48 c 0.50	>100 >100 1' 80 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) <u>E</u> (671)
1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol solvent THF 1,4-dioxane	$0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \\ 1.4 \\ Table 9. \\ log P \\ 0.49 \\ -1.1 \\ \end{bmatrix}$	100 100 113 113 113 113 Kinetic Res time (h) 100 100	58 62 48 38 48 51 52 olution of the monoacet yield (%) 47 40	61.7 45.6 99.1 96.8 93.0 92.2 90.3 a Diol <i>rac</i> -1n ate 2n ee (%) 99.1 >99.9	40 30 49 58 47 48 48 in Various So <u>diacetate</u> yield (%) 49 41	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1	0.39 0.32 0.50 0.60 0.50 0.49 0.48 <i>c</i> 0.50 0.50	>100 >100 1' 80 >100 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) E E (671) (>790)
1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol solvent THF 1,4-dioxane diethyl ether	$0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \\ 1.4 \\ Table 9. \\ log P \\ 0.49 \\ -1.1 \\ 0.85 \\ \end{bmatrix}$	100 100 113 113 113 113 Kinetic Res time (h) 100 100 100	58 62 48 38 48 51 52 olution of the monoacet yield (%) 47 40 48	61.7 45.6 99.1 96.8 93.0 92.2 90.3 b Diol <i>rac</i> -1n ee (%) 99.1 >99.9 99.8	40 30 49 58 47 48 48 in Various So <u>diacetate</u> yield (%) 49 41 49	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1 93.9	0.39 0.32 0.50 0.60 0.50 0.49 0.48 <i>c</i> 0.50 0.50 0.50 0.51	>100 >100 1' 80 >100 >100 >100 >100 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) 0 (295) E (671) (>790) (217)
1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol solvent THF 1,4-dioxane diethyl ether tert-butyl methyl ether	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9. 0.49 -1.1 0.85 2.0	100 100 110 113 113 113 113 Kinetic Res time (h) 100 100 100 100	58 62 48 38 48 51 52 olution of the monoacet yield (%) 47 40 48 49	61.7 45.6 99.1 96.8 93.0 92.2 90.3 b Diol <i>rac</i> -1 n ate 2n ee (%) 99.1 >99.9 99.8 99.0	40 30 49 58 47 48 48 in Various So <u>diacetate</u> yield (%) 49 41 49 51	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1 93.9 94.9	0.39 0.32 0.50 0.60 0.50 0.49 0.48 c 0.50 0.50 0.50 0.51 0.51	>100 >100 1' 80 >100 >100 >100 >100 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) E (671) (>790) (217) (202)
1.4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol THF 1,4-dioxane diethyl ether tert-butyl methyl ether toluene	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9. log P 0.49 -1.1 0.85 2.0 2.5	100 100 113 113 113 113 Kinetic Res time (h) 100 100 100 100	58 62 48 38 48 51 52 olution of the <u>monoacet</u> yield (%) 47 40 48 49 48	61.7 45.6 99.1 96.8 93.0 92.2 90.3 2 Diol <i>rac</i>-1n ate 2n ee (%) 99.1 >99.9 99.8 99.0 98.8	40 30 49 58 47 48 48 in Various So <u>diacetate</u> yield (%) 49 41 49 51 50	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1 93.9 94.9 94.9 92.4	0.39 0.32 0.50 0.60 0.49 0.48 c 0.48 c 0.50 0.50 0.50 0.51 0.51 0.52	>100 >100 1' 80 >100 >100 >100 >100 >100 >100	0 (220) 0 (223) 0 (332) 7 6 0 (226) 0 (295) <i>E</i> (671) (>790) (217) (202) (129)
1.4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol solvent THF 1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentenol	0.49 -1.1 0.85 2.0 2.5 ~2 1.4 Table 9. log P 0.49 -1.1 0.85 2.0 2.5 ~2	100 100 113 113 113 113 Kinetic Res time (h) 100 100 100 100 100	58 62 48 38 48 51 52 olution of the <u>monoacet</u> yield (%) 47 40 48 49 48 49	61.7 45.6 99.1 96.8 93.0 92.2 90.3 ate 2n ee (%) 99.1 >99.9 99.8 99.0 98.8 99.0	40 30 49 58 47 48 48 in Various So diacetate yield (%) 49 41 49 51 50 51	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1 93.9 94.9 94.9 92.4 94.4	0.39 0.32 0.50 0.60 0.50 0.49 0.48 c 0.50 0.50 0.50 0.51 0.51 0.52 0.51	>100 >100 1' 80 >100 >100 >100 >100 >100 >100 >100	0 (220) 0 (223) 0 (232) 7 6 0 (226) 0 (295) E (671) (>790) (217) (202) (129) (129)
1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert-amyl alcohol solvent THF 1,4-dioxane diethyl ether tert-butyl methyl ether toluene 3-methyl-3-pentanol tert emyl alcohol	$0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \\ 1.4 \\ Table 9. \\ 0.49 \\ -1.1 \\ 0.85 \\ 2.0 \\ 2.5 \\ \sim 2 \\ 1.4 \\ 1.4 \\ 0.14 $	100 100 113 113 113 113 Kinetic Res time (h) 100 100 100 100 100 100	58 62 48 38 48 51 52 olution of the monoacet yield (%) 47 40 48 49 48 49 48 49 47	61.7 45.6 99.1 96.8 93.0 92.2 90.3 a Diol <i>rac</i> -1n ate 2n ee (%) 99.1 >99.9 99.8 99.0 98.8 99.0 98.8 99.0 99.2	40 30 49 58 47 48 48 in Various So diacetate yield (%) 49 41 49 51 50 51 50	98.3 98.6 96.8 63.3 92.4 97.1 97.9 Ivents 3n ee (%) 98.4 98.1 93.9 94.9 92.4 92.4 92.4	0.39 0.32 0.50 0.60 0.50 0.49 0.48 c 0.50 0.50 0.50 0.51 0.51 0.52 0.51 0.52	>100 >100 1' 8 >100 >100 >100 >100 >100 >100 >100 >1	0 (220) 0 (223) 0 (223) 7 6 0 (226) 0 (295) E (671) (>790) (217) (202) (129) (129) (129)

alteration of the solvent in most cases caused a significant enhancement of the enantioselectivity compared with the standard solvent system tetrahydrofuran-triethylamine. However, E values greater than 100 should be judged with care because they are very sensitive to small errors in measurement of ee. The relationship concerning the enantioselectivity between the compounds with a substituent in the 2-position and in the 4-position is unaffected by variation of the solvent. But in contrast to other cases^{14a,c} there is no relationship between the 1-octanolwater partition coefficient (log P)²² as a term of hydrophobicity of the solvent and the enantioselectivity. Due

Table 10. Kinetic Resolution of the Diols *rac*-1b and *rac*-1k by Sequential Acetylation in *tert*-Butyl Methyl Ether

			Dine					
			(R))-2	(S)	-3		
substrate	R	time (h)	yield (%)	ee (%)	yield (%)	ee (%)	с	E
1b 1k	2-Me 2,3-C ₄ H ₄	60 124	61 62	54 64	37 38	95 95	0.36 0.40	67 75

to the amplification of the enantioselectivity by an alteration of the solvent the kinetic solution of Mephenesin (rac-1b) and the naphthyloxy derivative rac-1k was reinvestigated in *tert*-butyl methyl ether (Table 10) instead of tetrahydrofuran-triethylamine as solvent in order to improve the enantioselectivity which for these substrates

⁽²²⁾ Taft, R. W.; Abraham, M. H.; Famini, G. R.; Doherty, R. M.; Abboud, J.-L. M.; Kamlet, M. J. J. Pharm. Sci. 1985, 74, 807.

Table 11. Chiroptical Properties of the Diols 1a-n

				$[\theta] (\lambda_{max})$
				(deg cm ²
diol	ee	$[\alpha]^{20}D$	(concn, solvent)	mol-1)
(R)-1a	98	-10.8	(c 1, EtOH)	-667 (270)
(S)-1a	91	+10.2ª	(c 1.1, EtOH)	+717 (270)
(R)-1b	>99	+19.8	[c 0.9, hexane-i-PrOH (4:1)]	-407 (285)
(S)-1b	>99	-19.3	[c 0.9, hexane-i-PrOH (4:1)]	+407(285)
(R)-1c	>99	-9.3	(c 1, EtOH)	-583 (265)
(S)-1c	97	+9.5	(c 1, EtOH)	+617 (270)
(R)-1d	97	-9.2	(c 1, EtOH)	-380 (270)
(S)-1d	71	+7.5 ^b	(c 1, EtOH)	+530 (270)
(R)-1e	96	-11.1	(c 1, EtOH)	-500 (270)
(S)-1e	88	+11.2°	(c 1, EtOH)	+483 (270)
(R)-1f	99	-9.7	(c 1, EtOH)	-500 (270)
(S)-1f	98	+10.4	(c 1, EtOH)	+500 (270)
(R)-1g	94	-8.0	(c 1, EtOH)	-483 (280)
(S)-1g	96	+7.9d	(c 1, EtOH)	+483 (275)
(R)-1h	99	-4.0	(c 1, EtOH)	-461 (270)
		+14.0	[c 1, hexane-EtOH (4:1)]	
(S)-1h	99	+3.1*	(c 1, EtOH)	+277 (270)
		-13.4	[c 1, hexane-EtOH (4:1)]	
(R)-1i	>99	-12.7	(c 1, EtOH)	-544 (275)
(S)-1i	98	+13.7	(c 1, EtOH)	+359 (275)
(R)-1j	95	-11.8	(c 1, EtOH)	-667 (270)
(S)-1j	97	+12.3⁄	(c 1, EtOH)	+605 (270)
(R)-1 k	94	-7.4	(c 1, EtOH)	g
(S)-1 k	h	h		h
(R)-11	94	h		-157 (275)
(S)-11	h	h		h
(R)-1m	99	-8.11	(c 1, EtOH)	-314 (270)
(S)-1m	99	+8.9	(c 1, EtOH)	+302 (270)
(R)-1n	98	-7.1	(c 1, EtOH)	-305 (275)
(S)-1n	>99	+7.5	(c 1, EtOH)	+355 (270)

^a Reference 6, +8.6 (c 1.1, EtOH). ^b Reference 6, +14.7 (c 0.49, EtOH). ^c Reference 6, +12.9 (c 1.2, EtOH). ^d Reference 6, +5.9 (c 1.2, EtOH). ^e Reference 6, +2.7 (c 1, EtOH). ^f Reference 6, +46.9 (c 0.32, EtOH), +8.1 (c 1.5, MeOH). ^g Insoluble in Cupra A. ^h Not determined.

was only poor or moderate. In both cases the enantioselectivity of the transesterification reaction was enhanced significantly. For Mephenesin *rac*-1b the *E* value was increased from E = 27 in tetrahydrofuran-triethylamine to E = 67 in *tert*-butyl methyl ether and for *rac*-1k from E = 12 to E = 75, respectively. This enhancement in both cases allows the separation of the enantiomers in a more efficient manner.

Conclusions

Aliphatic racemic 1,2-diols are only poor substrates in lipase-catalyzed transesterification. A dramatic amplification of the enantiodifferentiation is caused by application of the concept of a sequential acylation. In the first step of this sequential procedure the racemic diol is converted into a racemic primary monoacetate. This monoacetate is a much better substrate in the following enantiodifferentiation step which is caused by a preferential diacylation of one of its enantiomers.

3-(Aryloxy)-1,2-propanediols are very useful substrates for this transformation to give products in high optical purity. Besides the presence of an aromatic residue the substitution pattern at the aromatic ring determines the enantioselectivity. Diols or rather their corresponding primary monoacetates with *para*-substituents in the aromatic part fit very well with the active site of lipase amano PS to realize a high enantioselection. On the other hand, *ortho*-substituents in the aromatic part seem to disturb an optimal interaction with the active site to achieve a high enantioselection. A very impressive example for this mismatching is the behavior of the *ortho*- substituted *tert*-butyl derivative 11 which shows neither a high conversion rate nor a reasonable enantioselectivity whereas the corresponding *para*-substituted derivative 1n is an excellent substrate.

The phenomenon that diols are worse substrates than their corresponding monoacylated derivatives in lipasecatalyzed transesterification was observed also for racemic diols with C_2 symmetry^{2b,12} where the first acylation step is less enantioselective than the second one. An analogous behavior was observed for many prochiral diols^{2a,c,d,14b,23} in which the monoacylation step shows a low or only moderate enantioselectivity. In the second step the "wrong" enantiomeric monoacetate is acylated to give a prochiral diacylated product and one unaffected monoacetate with high ee.

It seems that different types of diols in many cases are much worse substrates than their corresponding monoacyl derivatives in lipase-catalyzed enantioselective transesterifications. But in many cases the low enantioselectivity can be overcome by application of a sequential lipasecatalyzed acylation procedure.

Experimental Section

General. The corresponding diols 1 which have not been commercially available were synthesized from epichlorohydrin and the corresponding phenol²⁴ followed by a subsequent hydrolysis of the resulting glycid ether in the usual manner in water-acetone in the presence of a catalytic amount of boron trifluoride etherate. The following lipases were used: lipase PS (from Pseudomonas cepacia, Amano Co., Japan), pancreatin (from porcine pancreas, Fa. Belger, Germany), lipozyme 20M (from Mucor Miehei, Novo Nordisk, A/S, Denmark), SP 382 (from Candida antarctica, Novo Nordisk A/S, Denmark), and lipase from Yarrowia lipolytica (from the former Institute of Biotechnology of the Academy of Sciences of the GDR). THF, toluene, diethyl ether, tert-butyl methyl ether, and 1,4-dioxane were dried over sodium wire. 3-Methyl-3-pentanol and tertamyl alcohol were distilled from CaH₂. Triethylamine was distilled from and stored over KOH. All reactions were monitored by thin-layer chromatography on glass plates coated with a 0.25mm layer of silica gel. Compounds were visualized with a 3.5% solution of molybdatophosphoric acid in ethanol. Flash chromatography was performed with silica gel 60 (0.063-0.040 mm) using hexane-ethyl acetate as eluent. ¹H NMR and ¹³C NMR spectra were measured in CDCl₃ at 200 and 75 MHz, respectively. J values are given in Hz. EI mass spectra were measured at 70eV.

Attempted Resolution of Mephenesin rac-1b by Lipase-Catalyzed Monoacetylation. A solution of rac-1b in THF (2.5 mL) and NEt₃ (0.1 mL) was treated with vinyl acetate (0.65 mL) and the corresponding lipase (Table 1). The mixture was stirred until 25–50% of the diol 1b was converted into the primary monoacetate 2b and then filtered through Celite. The filter cake was washed with ethyl acetate (3×10 mL). The combined filtrates were concentrated under reduced pressure. The residue was separated by flash chromatography using hexane-ethyl acetate (1:1) as eluent to give (S)-1b and (S)-2b. For the determination of the ee (S)-2b was deacetylated as described below. Results are summarized in Table 1.

Kinetic Resolution of the Diols rac-la-n by a Lipase-Catalyzed Sequential Acetylation. A solution of the diols la-n (5 mmol) in THF-NEt₈ (12.5 mL:0.5 mL) or the corresponding solvent (12.5-25 mL) (Table 9) was treated with vinyl

^{(23) (}a) Wang, Y.-F.; Wong, C.-H. J. Org. Chem. 1988, 53, 3127. (b)
Santaniello, E.; Ferraboschi, P.; Grisenti, P. Tetrahedron Lett. 1990, 31, 5657. (c)
Burgess, K.; Henderson, I. Tetrahedron Lett. 1991, 32, 5701. (d)
Ader, U.; Breitgoff, D.; Klein, P.; Laumen, K. E.; Schneider, M. P. Tetrahedron Lett. 1989, 30, 1793.

⁽²⁴⁾ Frommelt, H.; Jedlinski, Z.; Ruebner, J.; Stolarzewicz, A.; Neumann, G.; Pradellok, W. DD 130419 (29. 3. 1978); Chem. Abstr. 1979, 90, 204857.

acetate (3.25 mL) and lipase amano PS (0.5 g). The reaction was stirred for the appropriate time (see Tables 2 and 4-10) until the diols 1a-n were converted to a mixture of the primary monoacetates 2a-n and the diacetates 3a-n. The enzyme was filtered off through a pad of Celite. The filter cake was washed with ethyl acetate $(3 \times 20 \text{ mL})$. The combined filtrates were concentrated under reduced pressure. The remaining residue was separated by flash chromatography into a fraction of the monoacetates (R)-2a-n and a fraction of the diacetates (S)-3a-nusing hexane-ethyl acetate (1:2) as eluent. Results are tabulated in Tables 2 and 4-10.

Results according to Table 2. (*R*)-Acetoxy-3-(4-methoxyphenyl)-2-propanol [(*R*)-**2g**]: oil; yield 0.53 g (48%); ¹H NMR δ 2.05 (s, 3), 2.55 (br s, 1), 3.71 (s, 3), 3.81-4.23 (m, 5), 6.78 (s, 4); ¹³C NMR δ 20.80, 55.68, 65.41, 68.52, 69.48, 114.69, 115.58, 152.47, 154.23, 171.18. MS *m*/*z* 240 (M⁺), 149, 124, 117 (100), 104, 95. Anal. Calcd for C₁₂H₁₆O₄: C, 59.99; H, 6.71. Found: C, 59.88; H, 6.81.

(S)-1,2-Diacetoxy-3-(4-methoxyphenyl)-propane [(S)-3g]: oil; yield 0.73 g (52%); bp 250 °C (1 Pa, Kugelrohr); ¹H NMR δ 2.00 (s, 3), 2.03 (s, 3), 3.69 (s, 3), 4.00 (d, 2, J = 5), 4.20 (dd, 1, J = 12, 6), 4.36 (dd, 1, J = 12, 4), 5.27 (quintet, 1, J = 4), 6.77 (s, 4). ¹³C NMR δ 20.71, 20.94, 55.65, 62.57, 66.81, 69.83, 114.64, 115.65, 152.41, 154.26, 170.26, 170.57. MS m/z 282 (M⁺), 159 (100), 124, 109, 99. Anal. Calcd for C₁₄H₁₈O₆: C, 59.57; H, 6.43. Found: C, 59.60; H, 6.45.

For the data of the other compounds see the supplementary material.

Deacetylation of 2a-n and 3a-n. Determination of the Enantiomeric Excess (ee) and the Absolute Configuration of the Diols 1a-n. The ee of the diols 1a-g, 1i, and 1k-m was determined as follows: The corresponding monoacetates (R)-2a-g, 2i, and 2k-m and diacetates (S)-3a-g, 3i, and 1k-m, respectively, were dissolved in methanol (10 mL) and treated with strongly basic ion-exchange resin Wofatit SBW (OH- form) (1 g) until the deacetylation by TLC monitoring was complete. The ion-exchange resin was filtered off, and the filtrate was concentrated under reduced pressure. The resulting diols were subjected to HPLC on cellulose tris((3,5-dimethylphenyl)carbamate).

(R)-2g (0.53 g) gave 0.46 g (95%) of (S)-1g: ee 96%; mp 74-76 °C. (S)-3g (0.73 g) gave 0.50 g (97%) of (R)-1g: ee 94%; mp 75-76 °C. Recrystallization of both enantiomers did not enhance the ee. For yields and data of the other diols see the supplementary material.

The monoacetates (R)-2j, (R)-2h, and (R)-2n were acetylated with acetic anhydride in pyridine in the usual manner to give the diacetates (R)-3j, (R)-3h, and (R)-3n. The (R)- and (S)-diacetates of 3j, 3h, and 3n were subjected to HPLC on cellulose tris((3,5dimethylphenyl)carbamate).

Kinetic Resolution of the Diols rac-4a-d by a Lipase-Catalyzed Sequential Acetylation. A solution of the diols rac-4a-d in THF was treated with NEt_3 , vinyl acetate, and lipase. After being stirred for the appropriate time the reaction mixture

Table 12. Reaction Conditions for the Resolution of theDiols rac-4a-d in Table 3

en- try	diol	amount (mmol)	THF (ml)	NEt3 (ml)	vinyl acetate (ml)	pan- creatin (mg)	amano PS (mg)	time (h)
1	4a	2.15	10	2	4.1	500		25.5
2	4a	2	10	2	3.9		100	22
3	4b	2.2	10	2	4.3	500		192
4	4b	2.3	10	2	4.4		100	96
5	4c	2	10	2	3.9	1000		96
6	4c	2.1	10	2	4.0		100	144
7	4d	1	2.5	0.5	0.65	500		96
8	4d	5	12.5	0.5	3.25		500	48

was worked up as described above for the reaction of the diols 1a-n. Results are shown in Table 3. The amounts of solvents, acylating agent, and lipase used as well as the reaction time are tabulated in Table 12. According to Table 12, entry 1, 0.199 g (70%) of monoacetate (S)-5a and 0.101 g (27%) of diacetate (R)-6a were obtained. Results regarding the enantioselectivity are shown in Table 3.

(S)-1-Acetoxy-2-butanol [(S)-5a]: ¹H NMR δ 0.92 (t, 3, J = 7), 1.46 (quintet, 2, J = 7), 2.04 (s, 3), 2.28 (s, 1), 3.72 (m, 1), 3.86-4.12 (m, 2); ¹³C NMR δ 9.75, 20.88, 26.36, 68.38, 71.08, 171.38.

(*R*)-1,2-Diacetoxybutane [(*R*)-6a]: ¹H NMR δ 0.87 (t, 3, J = 7), 1.56 (quintet, 2, J = 7), 2.00 (s, 3), 2.01 (s, 3), 4.04–4.21 (m, 2), 4.94 (m, 1); ¹³C NMR δ 9.48, 20.74, 21.02, 23.80, 64.74, 72.71, 170.57, 170.72.

For the data of the other compounds see supplementary material.

Determination of the ee of Diols 4a-d. The resulting monoacetates (S)-**5a-c** and (R)-**5d** and the diacetates (R)-**6a-c** and (S)-**6d** were deacetylated as described above with methanol and Wofatit SBW (OH⁻ form). The ee of the diols (R)- and (S)-**4a**-c was determined after pertrifluoroacetylation in the usual manner by GLC on Lipodex E. The ee of (R)- and (S)-**4d** was determined by HPLC on cellulose tris((4-chlorophenyl)carbamate).

(S)-5a (0.180 g) gave 0.117 g (95%) of (S)-4a: ee 49%. (R)-6a (0.090 g) gave 0.048 g (97%) of (R)-4a: ee 94%.

Acknowledgment. This work was supported by the Fonds der Chemischen Industrie. We are grateful for generous gifts of lipase PS from Amano Pharmaceutical Co. and of SP 382 and lipozyme 20M from Novo Nordisk, A/S.

Supplementary Material Available: Compound characterization data of the compounds (R)-2a, (R)-2c-f, (R)-2h-n, (S)-3a, (S)-3c-f, (S)-3h-n, (S)-5b, (S)-5c, (R)-5d, (R)-6b, (R)-6c, and (S)-6d (8 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfiche version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.